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a b s t r a c t

The aim of this paper is to propose an effective method for extracting the beat

characteristics and modal damping ratios of the bell type structures using the

continuous wavelet transform (CWT). The bell type structures which can be simplified

as a slightly asymmetric circular ring and cylindrical shell are commonly used to

analyze those of a Korean bell. The beat response is caused by the mutual interference of

mode pairs, which are created by the slight asymmetry of the bell type structures in the

circumferential direction. First of all, the beat frequencies and periods of each vibration

mode are obtained using the CWT based on the Gabor wavelet. Next, the modal

damping ratios associated with the time duration of the beat response are also extracted

by the CWT. When using the CWT on a given signal, the optimal shape of the Gabor

wavelet used as the mother wavelet is determined by employing the Shannon entropy

cost function on the normalized wavelet modulus. In order to show the accuracy of the

proposed method, the beat characteristics and damping ratios are extracted from the

simulated pure and noisy signals, which have mode pairs. Finally, the proposed method

is applied to a small-sized Korean bell to verify its applicability in the field.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

There are many traditional bells that are designated as national treasures in Korea. They are the Sangwon temple bell
(AD 725), the King Seong-deok Divine bell (AD 771) [1], the Yongju temple bell (AD 854), the Cheonheung temple bell
(AD 1010), the Bosingak bell (AD 1468) [2] and so on. Many of these Korean bells have two principal characteristics in
vibration and sound. First of all, a Korean bell has the beat characteristics, which are caused by the mutual interference of
mode pairs that are created by the slight asymmetry of the bell in the circumferential direction. A clear beat and proper
beat period are important for the liveliness of the Korean bell sound, while warble or beating sound should be eliminated
within the limits of the possible in the western bell [3,4]. Second, a Korean bell has long time duration of the beat in its
vibration and sound. The time duration of a beat phenomenon depends on the modal damping ratio associated with the
bell material and the cooling speed during its casting. The sonority of the sound in the bell is determined by the
relationships among frequencies, intensities, and the decay times of partials. At the instant of impact, most dominant
sound qualities are produced by several partial tones. However, higher mode tones decay rapidly after striking and people
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hear just the sound produced by the first mode (hum tone) and the second mode (fundamental tone), which lasts long.
Usually, a long lasting hum or fundamental tone is desired in a Korean bell.

Until now, the theoretical studies on the dynamic characteristics of the bell type structures have been carried out by
several researchers. Kim et al. [5] analyzed the beat response of the ring-stiffened shell with an attached concentrated mass
using the receptance method. Lee et al. [2] introduced numerical and experimental methods to predict and tune the
vibration and sound properties of a large sized Korean bell. Rossing and Perrier [6] studied the vibrational modes of a small
Korean bell by using holographic interferometry and modal analysis with impact excitation. Hong and Lee [7] analyzed the
mode pairs of a circular ring with a single deviation in the mass and stiffness. Park et al. [8] proposed an analytical method
to control the period and the clarity of the beat in a slightly asymmetric ring. They [9] also investigated the effect of
multiple local deviations on the property of mode pair in a circular ring. However, much of the previous research has been
focused on the theoretical beat characteristics of a bell type structure, such as a circular ring and a cylinder with a point
mass and local stiffness.

Up to now, hardly has any experimental research been carried out for identifying the beat characteristics and time
duration of the bell type structures. In this paper, the beat characteristics and modal damping ratios of a Korean bell are
experimentally identified from the CWT of a measured impulse signal. There are several time-frequency representation
tools, such as the CWT, the short time Fourier transform (STFT) and the Wigner–Ville distribution (WVD). In general, the
STFT has some limitations in analyzing a signal that varies with an instantaneous frequency because its time-frequency
resolution is fixed. The WVD has a better time-frequency resolution than the STFT, but despite its remarkable properties,
the WVD has limited applications because it contains the cross-talk effects. The CWT can overcome the limitations of the
STFT and the WVD because the time-frequency resolution of the CWT can be controlled adaptively. Recently, several studies
have been carried out using the CWT to identify the dynamic properties, which are the modal damping ratio, the natural
frequency and the mode shape [10–13]. The wavelet transforms have also used to detect the fault of the mechanical and
electric system [14–16]. When the CWT is applied to a measured signal, a systematic method has been studied that will
minimize the edge effect of the CWT [17,18].

The aim of this paper is to propose an effective method for extracting the beat characteristics and modal damping ratios
of the Korean bell using the CWT analysis. In conventional Fourier transform analysis, the frequency resolution is very
critical to effectively separate the given signal into each mode and to exactly extract the modal parameters. In this case, it
has an inevitable weakness of increase of the gathering time for an experimental signal. In conventional wavelet analysis, it
is also very difficult to decouple the very close two modes such as the beating mode of the Korean bell into each mode due
to the proximity of beating frequency. However, the inevitable weakness of the Fourier transform and the limitation of the
conventional wavelet transform could be overcome through the simultaneous manipulation of the very close two modes in
analyzing the given signal using the continuous wavelet transform. When applying the CWT to the beating response of the
Korean bell, the simultaneous manipulation of the low and high mode related with the beating response is carried out
without the individual decomposition of two modes.

This paper is organized in the following way. In Section 2, the theoretical background of the CWT is briefly explained. In
Section 3, the Shannon entropy cost function used to determine the optimal shape of the mother wavelet is also presented.
In Section 4, the mode decoupling process of the multi-degree of freedom system is explained using the CWT. After that,
the analytical beat characteristics of each mode are examined using a slightly asymmetric cylindrical shell, which can
analyze the beat characteristics of the Korean bell. Next, the beat characteristics and modal damping ratios from the
impulse responses of a slightly asymmetric cylindrical are analytically identified using the CWT. Finally, we experimentally
verify the proposed method with a small-sized Korean bell.

2. Theoretical background of the continuous wavelet transform

The continuous wavelet transform Wcxðu; sÞ [19] of an L2-based signal xðtÞ is defined as

Wcxðu; sÞ ¼

Z 1
�1

xðtÞc�u;sðtÞdt (1)

where

cu;sðtÞ ¼
1ffiffi

s
p c

t � u

s

� �
; s40; u 2 R. (2)

Here, c�ðtÞ is the complex conjugate of the mother wavelet cðtÞ, which is dilated with a scale parameter s related to the
frequency and translated by translation parameter u localizing the wavelet in the time-domain. The CWT represents the
convolution sum between a given signal xðtÞ and the scaled mother wavelet cðtÞ.

Another formulation for the CWT of Eq. (1) can be represented as a product of the Fourier transform between xðtÞ and
c�u;sðtÞ:

Wcxðu; sÞ ¼

ffiffi
s
p

2p

Z 1
�1

XðoÞC�ðsoÞeiou do, (3)

where XðoÞ and
ffiffi
s
p

C�ðsoÞeiou are the Fourier transform of xðtÞ and the Fourier transform of c�u;sðtÞ, respectively.
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The analytic wavelet function is used to separate the phase and amplitude information in the given signals. The mother
wavelet cðtÞ should satisfy the admissibility condition as follows:

Cc ¼

Z 1
�1

jCðoÞj2

joj doo1, (4)

where CðoÞ is the Fourier transform of the mother wavelet cðtÞ.
The existence of the integral in Eq. (4) requires thatZ 1

�1

cðtÞdt ¼ 0; i:e:Cð0Þ ¼ 0. (5)

Eqs. (4) and (5) mean that CðoÞ is the transfer function of a dilated band-pass filter in a frequency domain because CðoÞ
converges to zero as an angular frequency increases to infinity.

Many mother wavelets have been employed in taking the CWT of a given signal. In analyzing the frequency evolution of
a given signal, the CWT should use analytic wavelets such as the Gabor wavelet which has the smallest Heigenberg box
[19]. In other words, the Gabor wavelet has the best time-frequency localization in analyzing the given signal using the
CWT. The Gabor wavelet cðtÞ can be constructed with a frequency modulation of a real and symmetric Gaussian window
g(t):

cðtÞ ¼ gðtÞeiZt (6)

with

gðtÞ ¼
1

ðs2pÞ1=4
eð�t2=2s2Þ (7)

where Z is the center frequency of CðoÞ and s is the measure of time spread of cðtÞ. The shape of the Gabor wavelet is
controlled by the combination between Z and s. The Fourier transform of the Gaussian window is
GðoÞ ¼ ð4ps2Þ1=4eð�s

2o2=2Þ. If s2Z2 is much larger than one, then GðoÞ is approximately zero for joj4Z. Such Gabor
wavelets are then considered to be approximately analytic. The product of Z and s is called as the Gabor shaping factor
Gs ¼ sZ [20].

In Eq. (3), the dilated version of the Fourier transform for the Gabor wavelet is defined as

CðsoÞ ¼ ð4ps2Þ1=4e�s
2ðso�ZÞ2=2. (8)

CðsoÞ of Eq. (8) has a maximum value at the center frequency of the mother wavelet, i.e., so ¼ Z. This implies that the
Gabor wavelet can be considered as a band-pass filter, because it has a fast decay at the frequency ranges outside of the
center frequency.

3. Optimal shape determination of the mother wavelet

Before the calculation of the CWT of a given signal, the optimal Gabor shaping factor Gsopt ¼ sZ should be chosen to
ensure optimal resolution in both time and frequency. It is very important to choose the optimal Gabor shaping factor
because it affects the time-frequency localization of the CWT based on the Gabor wavelet. The Shannon entropy theorem
can be employed in order to determine the optimal Gabor shaping factor that gives the best time-frequency resolution of
the CWT. The Shannon entropy can measure the uncertainty or the energy concentration quantity as the outcome of a
random variable.

The one-dimensional Shannon entropy cost function H1ðX1Þ [19] of a random variable X1 is given by

H1ðX1Þ ¼ �
XK
k¼1

pk log2 pk; X1 ¼ fxkgk¼1;2;...;K and pk ¼
jxkj

2

kX1k
2

, (9)

where pk is the probability of the kth variable in the total energy and H1ðX1Þ is the uncertainty or the energy concentration
level as the result of the random variable X1. The range of H1ðX1Þ is

0 � H1ðX1Þ � log2K. (10)

The maximum value of log2K implies that all variables have a uniform probability distribution, i.e., pk ¼ 1=K for 1 � k � K.
Conversely, the minimum value, i.e., H1ðX1Þ ¼ 0, implies that the probability of a certain variable is one and the probability
of the others is zero. In other words, the entropy is large if the energy is uniformly distributed on whole variables. On the
other hand, the entropy is small if the energy is concentrated on certain variables.

If we apply the Shannon entropy theorem to the normalized scalogram NW xðu; sÞ, which is defined as jW xðu; sÞj2=s, we
can obtain the two-dimensional normalized wavelet entropy:

H2ðX2Þ ¼ �
XJ

j¼1

pj log2 pj, (11)
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where

X2 ¼ fNW xðuk; sjÞgk¼1;2;...;K
j¼1;2;...;J

and pj ¼

PK
k¼1NW xðuk; sjÞPJ

j¼1

PK
k¼1NW xðuk; sjÞ

. (12)

Eventually, the optimal Gabor shaping factor Gsopt that minimizes the Shannon entropy cost function H2ðX2Þ of the
normalized scalogram can be obtained by

Gsopt ¼ arg min
Gs

H2ðX2Þ

� �
. (13)

The optimal Gabor shaping factor concentrates the energy of a given signal near the wavelet ridges.

4. Estimation of the beat characteristics and damping ratios using the CWT

4.1. The CWT of mono- and multi-spectral signals

Consider the wavelet transform for xðtÞ ¼ AðtÞ cosðjðtÞÞ of the single degree of freedom (SDOF) system where A(t) and
jðtÞ are an amplitude and a time-varying phase, respectively. If xðtÞ is assumed to be an asymptotic signal, an analytic
function of xðtÞ is

xaðtÞ ¼ AðtÞeijðtÞ. (14)

The wavelet transform based on the Gabor wavelet can be obtained as

Wcxðu; sÞ ¼
1

2
hxaðtÞ;cu;sðtÞi ¼

ffiffi
s
p

2
AðuÞeijðuÞ GðZ� sj0ðuÞÞ þ � u;

Z
s

� �n o
, (15)

where G(o) is the Fourier transform of the Gaussian window function g(t). Using CðoÞ ¼ Gðo� ZÞ, GðZ� sj0ðuÞÞ in Eq. (15)
becomes C�ðsj0ðuÞÞ. If A(t) and j0(t) have small variation over the support of cu;sðtÞ and if j0(u) is larger than Doc=s where
Doc is frequency bandwidth of the mother wavelet, the corrective term �ðu;Z=sÞ can be neglected. Therefore, Eq. (15) can
be finally approximated as

Wcxðu; sÞ ffi

ffiffi
s
p

2
AðuÞeijðuÞC�ðsj0ðuÞÞ. (16)

Since CðsoÞ has a maximum value at so ¼ Z, the absolute wavelet transform jWcxðu; sÞj is maximum at s(u)j0(u) ¼ Z,
which are the wavelet ridge points. The wavelet ridges are a collection of corresponding points (u,j0(u)), at which the
normalized energy density called the wavelet scalogram becomes a local maximum at each time.

Consider that x(t) is the response of the multi-degree of freedom (MDOF) system. The response of the N-DOF system can
be expressed as a summation of the response of the SDOF system as follows:

xðtÞ ¼
XN
k¼1

xkðtÞ ¼
XN
k¼1

AkðtÞe
ijkðtÞ; k ¼ 1;2; . . . i� 1; i; iþ 1; . . . ;N; (17)

where Ak(t) and jk(t) are an amplitude and a time-varying phase of xk(t), respectively.
Since the CWT is a linear transformation of a given signal, the CWT of the signal with the multi-spectral components is

given by the summation of that of SDOF signal:

Wcxðu; sÞ ¼Wc
XN
k¼1

xkðu; sÞ

( )
ffi
XN
k¼1

ffiffi
s
p

2
AkðuÞ e

ijkðuÞC�ðskj
0
kðuÞÞ, (18)

where if the dilated window has an enough frequency resolution at the wavelet ridge scales, which are si ¼ Z=j0iðuÞ and
siþ1 ¼ Z=j0iþ1ðuÞ, the instantaneous frequencies j0iðtÞ and j0iþ1ðtÞ do not interfere with the wavelet ridges of j0iðtÞ and
j0iþ1ðtÞ each other:

jj0iðuÞ �j
0
iþ1ðuÞj

j0
i
ðuÞ

�
Doc
Z

(19a)

and

jj0iðuÞ �j
0
iþ1ðuÞj

j0
iþ1
ðuÞ

�
Doc
Z

. (19b)

The two spectral components of a signal x(t), which are very close, can effectively be separated by selecting a very small
value for an octave bandwidth (Doc/Z). In other words, either a very big center frequency Z should be selected when
calculating the CWT of a signal x(t) or a very small bandwidth Doc should be chosen. However, an adequate center
frequency Z for the Gabor wavelet should be selected. Although the selection of a big center frequency gives a very narrow
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frequency resolution, the time resolution is not very good in the CWT when using the Gabor wavelet. For this reason, when
applying the Gabor wavelet for the CWT analysis, the optimal center frequency Z and optimal time spread s, which can be
obtained by the Shannon wavelet entropy theorem, should be selected to well decouple the given signal into each mode
because the size of the Heigenberg box for the Gabor wavelet is fixed by 1

2 [19].
In Eq. (18), if we choose the optimal Gabor shaping factor in order to have sufficient frequency resolution, we can

decouple the close natural modes. In other words, because the mother wavelet function has compact support in the
frequency and time domains, the wavelet transform at the scale parameter si associated with the ith dynamic mode can
only provide a relevant contribution. On the other hand, at a scale parameter not associated with the ith dynamic mode, the
wavelet transform cannot provide any contribution:

C�ðskj
0
kðuÞÞ ¼ 0 for k ¼ 1;2; . . . ; i� 1; iþ 1; . . . ;N. (20)

Thus, the wavelet transform of the MDOF system can be decoupled into each mode of the SDOF system:

Wcxiðu; siÞ ¼

ffiffiffiffi
si
p

2
AiðuÞ e

ijiðuÞC�ðsij0iðuÞÞ. (21)

Finally, the mode decoupling procedure of the MDOF system is effectively accomplished by the CWT.

4.2. Extracting the beat characteristics and damping ratios of bell type structures

The most important characteristics of a Korean bell are its beat characteristics and a long duration in its sound. Such a
Korean bell can be mathematically modeled as a slightly asymmetric cylindrical shell or circular ring. By the impulse
response analysis, the beat response of each (m, n) mode in a slightly asymmetric cylindrical shell is given by [1]

u3mnðx
�; y; tÞ ¼ e�zmnaomnatfcos nðy� �jmnLÞ cos nðy�jmnLÞ sinðomnLtÞ

þ cos nðy� �jmnHÞ cos nðy�jmnHÞ sinðomnHtÞg, (22)

where omnH and omnL are the natural frequency of the high mode and the natural frequency of the low mode, respectively.
Subscripts m and n mean the mode sequence of the longitudinal direction and the mode sequence of the radial direction in
the Korean bell, respectively. y* is the position of the striking point. jmnH and jmnL are the position of the anti-node for the
high mode and the position of the anti-node for the low mode, respectively. The phase difference between the low and high
mode in a certain mode pair is given by

jmnH ¼ jmnL þ
p

2n
; n ¼ 2;3;4; . . . ;1. (23)

The average values of frequency and damping are used as follows, since these values for each mode pair are almost the
same:

omna ¼ ðomnL þomnHÞ=2 and zmna ¼ ðzmnL þ zmnHÞ=2. (24)

By using Eq. (21), the CWT for a certain mode (m, n) of a slightly asymmetric cylindrical shell, as is shown in Eq. (22), is
given by

Wcu3mnðu; sÞ ¼Wcu3mnLðu; sÞ þWcu3mnHðu; sÞ, (25)

where

Wcu3mnLðu; sÞ ¼
CmnL

2

ffiffi
s
p

e�zmnaomnauC�ðsomnLÞ e
iomnLu, (26)

Wcu3mnHðu; sÞ ¼
CmnH

2

ffiffi
s
p

e�zmnaomnauC�ðsomnHÞ e
iomnHu, (27)

CmnL ¼ cos nðy� �jmnLÞ cos nðy�jmnLÞ, (28a)

CmnH ¼ cos nðy� �jmnHÞ cos nðy�jmnHÞ. (28b)

Here, CmnL and CmnH are the contribution factor of the low mode (m, n)L and the contribution factor of the high mode (m, n)H

contributing to the beat response, respectively.
Since the dilated mother wavelet function CðsomnaoÞ is a symmetric function at the center frequency Z on the x-axis,

C�ðsomnaomnLÞ is equal to C�ðsomnaomnHÞ where somna is the scale parameter corresponding to the average frequency
omna of the low and high mode. Thus, at the average frequency omna, Eq. (25) becomes

Wcu3mnðu; somna Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
somna

p

2
e�zmnaomnauC�ðsomnaomnLÞfCmnL eiomnLu þ CmnH eiomnHug

¼

ffiffiffiffiffiffiffiffiffiffiffiffi
somna

p

2
e�zmnaomnauC�ðsomnaomnLÞRmn eiYmn , (29)
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where

Rmn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

mnL þ C2
mnH þ 2CmnLCmnH cosfðomnH �omnLÞug

q
, (30)

Ymn ¼ tan�1 CmnL sin omnLuþ CmnH sin omnHu

CmnL cos omnLuþ CmnH cos omnHu

� �
. (31)

In order to obtain the modulus of the wavelet transform, we must take the absolute value for Wcu3mnðu; somna Þ:

jWcu3mnðu; somna Þj ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
somna

p

2
e�zmnaomnaujC�ðsomnaomnLÞRmnj, (32)

In Eq. (32), the envelope of the wavelet modulus jWcu3mnLðu; somna Þj at omna is the function of cos{(omnH�omnL)u}.
The period of the amplitude-modulated envelope in the wavelet modulus indicates the beat period of the (m, n) beating
mode:

Tmn ¼
4p

omnH �omnL
. (33)

In order to extract the damping ratio of the (m, n) mode associated with the beat response, we take a semi-logarithm of
the wavelet modulus jWcu3mnðu; somna Þj to obtain the following:

ln jWcu3mnðu; somna Þj ¼ �zmnaomnauþ ln

ffiffiffiffiffiffiffiffiffiffiffiffi
somna

p

2
jC�ðsomnaomnLÞRmnj

� �
, (34)

The damping ratios of a given signal u3mnðtÞ can be identified by calculating the slope of the straight line having a
translation parameter u as an independent variable on the semi-logarithm of the wavelet modulus.

If CmnL is equal to CmnH, i.e., an in-phase contribution of a low (m, n)L and high mode (m, n)H to a beat response of the (m,
n) mode, Eq. (29) can be rewritten as

Wcu3mnðu; somna Þ ¼ CmnL
ffiffiffiffiffiffiffiffiffiffiffiffi
somna

p
e�zmnaomnauC�ðsomnaomnLÞ cos amn eibmn , (35)

where

amn ¼ ðomnH �omnLÞu=2 (36a)

and

bmn ¼ ðomnH þomnLÞu=2. (36b)

If CmnL is equal to �CmnH, i.e., an out-of-phase contribution of a low (m, n)L and high mode (m, n)H to beat response of the
(m, n) mode, Eq. (29) can be rewritten as

Wcu3mnðu; somna Þ ¼ �iCmnL
ffiffiffiffiffiffiffiffiffiffiffiffi
somna

p
e�zmnaomnauC�ðsomnaomnLÞ sin amn eibmn . (37)

As can be seen in Eq. (35), when the contribution of the low and high mode contributing to the beat response is the same,
the wavelet modulus shows the function of cosamn at the average frequency between the low and high mode. On the other
hand, as can be seen in Eq. (37), if the contribution of the low and high mode contributing to the beat response is out-of-
phase, the wavelet modulus is the function of sinamn. In the same manner, the period of the envelope in the wavelet
modulus is Tmn ¼ 4p=ðomnH �omnLÞ.

In Eqs. (35) and (37), the argument of Wcu3mnðu; somna Þ is given by

argfWcu3mnðu; somna Þg ¼ ðomnH þomnLÞu=2. (38)

If we take a derivative with respect to the translation parameter for Eq. (38), the average value of the low and high
frequency for the (m, n) mode can be obtained as

omna ¼
d

du
argfWcu3mnðu; somna Þg ¼ ðomnH þomnLÞ=2. (39)

Finally, the natural frequencies of the low mode omnL and high mode omnH for the (m, n) mode can be obtained from Eqs.
(33) and (39), respectively.

omnL ¼ omna �
2p

Tmn
(40a)

and

omnH ¼ omna þ
2p

Tmn
. (40b)
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If either CmnL or CmnH is zero, i.e., the response or excitation point is located on the nodal line of the low or high mode of
the (m, n) mode, then the wavelet transform of each mode can be simply obtained as follows:

Wcu3mnðu; sÞ ¼

CmnL

2

ffiffi
s
p

e�zmnLomnLuC�ðsomnLÞ e
iomnLu for low mode;

CmnH

2

ffiffi
s
p

e�zmnHomnHuC�ðsomnHÞ e
iomnHu for high mode:

8>><
>>: (41a,b)

At the nodal line of the high mode of each (m, n) mode, the modal damping ratio for the low mode can be obtained by
calculating the slope of the straight line of the wavelet modulus:

ln jWcu3mnðu; somnL
Þj ¼ �zmnLomnLuþ ln

CmnL

2

ffiffiffiffiffiffiffiffiffiffiffiffi
somnL

p
jC�ðsomnL

omnLÞj

� �
. (42)

Similarly, at the nodal line of the low mode of each (m, n) mode, the modal damping ratio for the high mode can be
obtained by calculating the slope of the straight line of the wavelet modulus:

ln jWcu3mnðu; somnH
Þj ¼ �zmnHomnHuþ ln

CmnH

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
somnH

p
jC�ðsomnH

oomnH
Þj

� �
. (43)

As can be seen in Eqs. (42) and (43), we cannot observe any period of the wavelet modulus because the response or
excitation point is placed on the nodal line of each mode.

Similarly, the low or high frequency of the (m, n) mode can be obtained by computing the derivative of the argument of
the wavelet transform in Eq. (41a,b):

omnL ¼
d

du
argfWcu3mnðu; somnL

Þg (44a)

and

omnH ¼
d

du
argfWcu3mnðu; somnH

Þg. (44b)

5. Simulation results and discussion

In this section, we examine the effectiveness of the proposed method with a simulated model in identifying the beat
characteristics and modal damping ratios of the bell type structures using the CWT. As previously stated, the most
remarkable characteristics of a Korean bell are the beat phenomenon and long time duration for its vibration and sound. In
order to identify the beat and damping ratio associated with the time duration, we simulated the dynamic system with the
beat phenomenon and the modal damping using Eq. (22). In this paper, the MATLAB program was used for the calculation
of the CWT. For the simulation, the contribution factors of the low and high mode contributing to the beating response of
the (m, n) mode, the modal damping ratios and the natural frequencies of the low and high mode are given in Table 1. As is
listed in Table 1, because the contribution of the ð1;2ÞH mode and the contribution of the ð0;4ÞL mode are zero, the mode
pairs contributing to the beating response are the only three modes, which are the ð0;2Þ, ð0;3Þ and ð1;3Þmode. Each modal
response of the simulated model is expressed in time domain, as is shown in Fig. 1. The total sum of the modal response is
shown in Fig. 2. In this section, the simulation using the wavelet transform was carried out in two cases, which are the pure
signal and the signal to noise ratio (SNR) 5 dB noisy signal. In Fig. 2, the black line and gray line indicate the pure signal
without any noise and SNR 5 dB noisy signal, respectively.
Table 1
Description of the simulated signal.

Mode sequence Contribution factor of each mode ðCmnL ;CmnHÞ Damping ratio ðzmnÞ Natural frequency (Hz)

ð0;2ÞL 1.5 0.00009 90.69

ð0;2ÞH 1.5 0.00011 91.62

ð0;3ÞL 0.4 0.00029 170.71

ð0;3ÞH �0.4 0.00031 171.22

ð1;2ÞL 0.35 0.00032 309.57

ð1;2ÞH 0 – –

ð1;3ÞL �0.3 0.00035 358.62

ð1;3ÞH 0.3 0.00037 359.91

ð0;4ÞL 0 – –

ð0;4ÞH 0.25 0.00038 403.23
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Fig. 1. Each modal response contributing to the beat phenomenon: (a) ð0;2Þ mode; (b) ð0;3Þ mode; (c) ð1;2Þ mode; (d) ð1;3Þ mode; (e) ð0;4Þ mode.

Fig. 2. The summation of each modal response. (—) pure signal and ( ) SNR 5 dB noisy signal.
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First of all, the optimal Gabor shaping factor which gives the best time frequency localization in taking the CWT of the
simulated signal was obtained using the Shannon entropy cost function as previously stated. Under the constant center
frequency Z for the Gabor wavelet, the time spread s of the Gaussian window was set as an independent variable. In this
simulation, the center frequency Z satisfying the admissibility condition of Eq. (4) was selected to be 4p. In the case of the
pure signal, the optimal time spread s of Gaussian window obtained from the Shannon entropy was determined to beffiffiffiffiffiffiffiffiffiffiffi

13=2
p

, as is shown in Fig. 3. The obtained optimal time spread sopt gives the Shannon wavelet entropy its lowest value.
Using the optimal Gabor shaping factor Gsopt, we carried out the CWT on the pure signal, as is shown in Fig. 4. The two-
dimensional wavelet modulus contour shown in Fig. 4 has three beating modes and two exponential decay modes at each
natural frequency. The ridge lines, which correspond to the local maximum of wavelet modulus, indicate the average
frequency of the low and high mode for the (m, n) mode. The wavelet modulus plots are shown in Figs. 5(a) and (c) in time
domain at each average frequency of the (m, n) beating mode. Because the first beating mode ð0;2Þ is in-phase contribution
from the low and high mode, Fig. 5(a) indicates a cosine wave for the wavelet magnitude, as is described in Eq. (35). On the
other hand, because the second beating mode ð0;3Þ consists of an out-of-phase contribution between the low and high
mode, Fig. 5(c) shows a sine wave as the magnitude of the wavelet modulus, as is shown in Eq. (37). Using Eq. (33), we
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Fig. 3. The Shannon wavelet entropy of the simulated signal.

Fig. 4. The two-dimensional wavelet modulus of the simulated signal.
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extracted the beat periods from these wavelet modulus graphs, as are listed in Table 2. Similarly, we extracted the beat
periods of each mode in case of SNR 5 dB noisy signal. The extracted beat periods of the two cases, which are the pure and
noisy signal, are in close agreement with the given values. As is listed in Table 3, the low and high natural frequency related
to the (m, n) beating mode were obtained from Eqs. (39) and (40), and the low or high natural frequency of the (m, n) mode
not related to the beating response was obtained by Eq. (44). In the two cases which are the pure signal and the SNR 5 dB
noisy signal, the acquired natural frequencies are in close agreement with the given values.

Next, we can use Eqs. (34), (42) and (43) in order to obtain the modal damping ratios of the simulated signals. Eq. (34) is
suitable in extracting the modal damping ratios of the beating mode, and Eqs. (42) and (43) are effective for extracting
those ratios when either the contribution of the low mode or the contribution of the high mode is zero. Figs. 5(b) and (d)
are the semi-logarithms of the wavelet modulus at each average frequency between the high and low mode. Finally, we
identified the modal damping ratio using the slope of the semi-logarithm of the wavelet modulus, as is listed in Table 4.
Regarding the case of the pure and noisy signal, the results obtained in Table 4 are in very good agreement with the given
values.

So far, we have verified the validity of the proposed method in identifying the beat period, the modal damping ratio and
the natural frequency of the simulated signal with the mode pairs. Even if the simulated signal was seriously contaminated
by noise, the proposed method gave us very reliable results. We especially confirmed that the CWT is very convenient and
reliable tool in performing the mode decoupling procedure when we identify the modal parameters of the bell type
structures.
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Fig. 5. The wavelet modulus and its semi-logarithm of the simulated signal: (a) wavelet modulus of ð0;2Þ mode; (b) semi-logarithm of ð0;2Þ mode; (c)

wavelet modulus of ð0;3Þ mode; (d) semi-logarithm of ð0;3Þ mode.

Table 2
Estimated beat period of the pure and SNR 5 dB signal.

Mode sequence Given beat period (s) Beat period obtained by the CWT (s)

Pure signal SNR 5 dB noisy signal

ð0;2Þ 2.151 2.151 2.150

ð0;3Þ 3.922 3.922 3.922

ð1;2Þ 0 0 0

ð1;3Þ 1.550 1.551 1.551

ð0;4Þ 0 0 0

S.Y. Park et al. / Journal of Sound and Vibration 326 (2009) 367–382376
6. Experimental results and discussion

In previous section, we investigated the validity of the proposed method in identifying the beat characteristics and
damping ratios of the bell type structure. In this section, we applied the proposed method to a small-sized Korean bell
(small-scale Bosingak bell) to verify its applicability in the field. The dimensions of the bell used for an experiment
and experimental setup for impact testing are described in Fig. 6. The external force of the bell was excited by an
ENDEVCO 2302-10 impact hammer with a rubber tip, and acceleration signals from the bell were measured using a PCB
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Table 3
Estimated natural frequency of the pure and SNR 5 dB signal.

Mode sequence Given values (Hz) Pure signal (Hz) SNR 5 dB noisy signal (Hz)

ð0;2ÞL 90.69 90.69 90.69

ð0;2ÞH 91.62 91.62 91.62

ð0;3ÞL 170.71 170.69 170.69

ð0;3ÞH 171.22 171.20 171.20

ð1;2ÞL 309.57 309.64 309.64

ð1;2ÞH – – –

ð1;3ÞL 358.62 358.42 358.42

ð1;3ÞH 359.91 359.71 359.71

ð0;4ÞL – – –

ð0;4ÞH 403.23 403.18 403.18

Table 4
Estimated modal damping ratio of the pure and SNR 5 dB signal.

Mode sequence Averaged modal damping ratio (zmna)

Given values Pure signal SNR 5 dB noisy signal

ð0;2Þ 0.00010 0.0000999 0.0000998

ð0;3Þ 0.00030 0.000301 0.000299

ð1;2Þ 0.00032 0.000320 0.000320

ð1;3Þ 0.00036 0.000359 0.000359

ð0;4Þ 0.00038 0.000381 0.000381

Fig. 6. The geometry dimensions of a Korean bell and experimental setup for an impact testing.
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352C22 uni-axial accelerometer. Impact signals of the bell were gathered by LMS analyzer system (Test.Lab and SCADAS III).
Because the amplitude and the phase of the low and high mode contributing to beating response of (m, n) mode in a
bell are different from one position to another position, the determination of measurement point and striking position is
very important in accurately measuring the beat response of each mode [1]. In this paper, the striking position of the
impact hammer and the measurement position by the accelerometer are illustrated in Fig. 7.

First, we chose Impact 1 as the first striking position and Measurement 1 as the first measurement position. The
temporal response under the impact testing is shown in Fig. 8. Before performing the CWT of the measured signal, the
optimal Gabor shaping factor was obtained using the Shannon wavelet entropy. In this simulation, we selected the center
frequency to be 12p, and then the optimal time spread s of the Gaussian window was determined to be three, as is shown
in Fig. 9.

Using the optimal Gabor shaping factor Gsopt obtained from Eq. (13), we carried out the CWT on the measured signal, as
is shown in Fig. 10. The wavelet modulus contour shown in Fig. 10 has two beating modes, which are the ð0;2Þ mode and
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Fig. 7. The positions of impact and measurement (top view).

Fig. 8. The temporal response under the impact testing.

Fig. 9. The wavelet Shannon entropy of the measured signal.

S.Y. Park et al. / Journal of Sound and Vibration 326 (2009) 367–382378
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Fig. 10. The two-dimensional wavelet modulus of the measured signal.

Fig. 11. The wavelet modulus and its semi-logarithm of the measured signal: (a) wavelet modulus of ð0;2Þ mode; (b) semi-logarithm of ð0;2Þ mode; (c)

wavelet modulus of ð0;3Þ mode; (d) semi-logarithm of ð0;3Þ mode.

S.Y. Park et al. / Journal of Sound and Vibration 326 (2009) 367–382 379
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ð0;3Þ mode, and four exponential decay modes, which are the ð1;2Þ mode, ð1;3Þ mode, ð0;4Þ mode and ð1;4Þ mode. We
extracted the wavelet modulus at the first and second average frequency, and then we took the semi-logarithm for
estimating the beat periods, natural frequencies and modal damping ratios of the low and high mode shown in Fig. 11. As
shown in Fig. 11(a), because the wavelet modulus for the ð0;2Þ beating mode shows a cosine wave, the contribution of the
low and high mode contributing to the ð0;2Þ beating response is in-phase at the position of Measurement 1. However, the
contribution of the low and high mode contributing to the ð0;3Þ beating response is out-of-phase at the position of
Measurement 1 because the wavelet modulus for the ð0;3Þ beating mode is a sine wave, as is shown in Fig. 11(c). As shown
in Fig. 10, the wavelet modulus diagram of the response measured at Measurement 1 has only the exponential decay
response characteristics in the frequency range of the third and fourth beating mode. For this reason, we cannot obtain the
beat characteristics such as beat period and modal damping ratio at the third and fourth beating mode. In order to obtain
the beat characteristics and modal damping ratio of the third and fourth beating mode, we chose Impact 2 for the
excitation of the bell and Measurement 2 for measuring the beating response. Similarly, we estimated the damping ratios,
natural frequencies and beat periods at the third and fourth average frequency on the wavelet modulus contour and its
Table 5
Estimated beat period of the measured signal.

Mode sequence Estimated beat period (s) Estimated averaged frequency (Hz)

ð0;2Þ 2.110 250.00

ð0;3Þ 1.448 666.67

ð1;2Þ 0.809 911.85

ð1;3Þ 0.770 940.44

ð0;4Þ 0.943 1003.30

ð1;4Þ 0.497 1295.90

Table 6
Estimated natural frequency of the measured signal.

Mode sequence Natural frequency using Eq. (40) (Hz) Natural frequency using Eq. (44) (Hz) Difference (%)

ð0;2ÞL 249.53 249.69 �0.063

ð0;2ÞH 250.47 250.63 �0.062

ð0;3ÞL 665.98 665.93 0.008

ð0;3ÞH 667.36 667.41 �0.007

ð1;2ÞL 910.62 910.47 0.016

ð1;2ÞH 913.09 913.24 �0.017

ð1;3ÞL 939.14 938.97 0.018

ð1;3ÞH 941.74 941.92 �0.019

ð0;4ÞL 1002.24 1001.67 0.057

ð0;4ÞH 1004.36 1003.34 0.101

ð1;4ÞL 1293.89 1293.10 0.061

ð1;4ÞH 1297.91 1298.70 �0.061

Table 7
Estimated modal damping ratio of the measured signal.

Mode sequence Modal damping ratio using Eq. (34) Modal damping ratio using Eqs. (42) and (43)

ð0;2Þ 0.00011 ð0;2ÞL 0.00013

ð0;2ÞH 0.00011

ð0;3Þ 0.00030 ð0;3ÞL 0.00032

ð0;3ÞH 0.00029

ð1;2Þ 0.00045 ð1;2ÞL 0.00043

ð1;2ÞH 0.00047

ð1;3Þ 0.00036 ð1;3ÞL 0.00037

ð1;3ÞH 0.00036

ð0;4Þ 0.00043 ð0;4ÞL 0.00044

ð0;4ÞH 0.00043

ð1;4Þ 0.00032 ð1;4ÞL 0.00033

ð1;4ÞH 0.00032
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Fig. 12. The wavelet modulus (a) of the first low ð0;2ÞL and high mode ð0;2ÞH in the measured signal and its semi-logarithm (b). (—) the first low mode,

(- - -) the first high mode.
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semi-logarithm, as are listed in Tables 5 and 6. For the fifth and sixth beating mode, we chose Impact 3 as the impact
location and Measurement 3 as the measurement position. Table 6 shows the low and high natural frequency of each
beating mode calculated by Eqs. (40) and (44). The natural frequencies of the low and high mode obtained from Eq. (40)
were well agreed with those obtained from Eqs. (44). Table 7 shows the modal damping ratios obtained by Eqs. (34), (42)
and (43). Similarly, the modal damping ratios by Eq. (34) were in good agreement with those by Eqs. (42) and (43).
Especially, the modal damping ratio and natural frequency of the first low mode were obtained at the position of
Measurement 4 under the excitation of Impact 4, and those of the first high mode were obtained at the position of
Measurement 2 under the excitation of Impact 2. Fig. 12 shows the wavelet modulus and its semi-logarithm of the signals
measured from Measurements 4 and 2. Namely, Measurements 4 and 2 are located on the nodal line of the high mode
ð0;2ÞH and the nodal line of the low mode ð0;2ÞL, respectively. Finally, the modal damping ratios and natural frequencies
calculated by Eqs. (34) and (40) are in good agreement with those results obtained from Eqs. (42)–(44).
7. Conclusions

In this paper, we proposed an effective method for estimating the beat characteristics and modal damping ratios of a
Korean bell using the continuous wavelet transform. The modal decoupling procedure of a beating signal was effectively
carried out using the CWT based on the Gabor wavelet. Before taking the CWT for a beating signal, the optimal shape of the
Gabor wavelet was determined by employing the Shannon entropy cost function. The optimal Gabor shaping factor, which
gives the best time frequency resolution in the CWT of a given signal, was applied to a pure and noisy signal. In an example
simulation, the effectiveness of the CWT was verified in identifying the beat characteristics and damping characteristics of
a simulated beating response. The beat characteristics, which are the beat period, the beating frequency and the phase of
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the low and high mode contributing to the beating response, were estimated from the wavelet modulus of a given signal.
The modal damping ratio of each mode was also extracted from the slope of the semi-logarithm of the wavelet modulus.
Finally, we performed the experiment with a Korean bell. The results obtained from the CWT of the experimental signal
confirmed the effectiveness of the proposed method.
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